
Image Inpainting with GANs

Adam Austerberry
University of Michigan

adamau@umich.edu

Andriy Massimilla
University of Michigan
andriym@umich.edu

Abstract

Image inpainting is an arguably fundamental computer
vision task which can demonstrate a model’s understand-
ing of the scene and a its ability to predict it. This paper
attempts an implementation of Context Encoder, an image
inpainting approach, and compares our results to the results
achieved in the original Context Encoder paper.

1. Introduction
Image inpainting is the task of filling in a part or parts of

an image using the surrounding context to create a believ-
able result. It has applications in data loss recovery, image
editing, and more. We chose this for our project because
the task of image inpainting is fundamentally challenging in
nature. In this paper, we attempt to use GAN image inpaint-
ing techniques to fill in a 64x64 black square in the center
of a 128x128 image. Predicting large amounts of data from
a limited context, such as with our problem, is hard – but
GAN approaches do a lot better and give some promising
results.

Our paper focuses on our implementation of the Con-
text Encoder approach, compares our results to the results
achieved in the original Context Encoder paper, and ex-
periments with different model parameters and architecture
changes.

2. Related Work
Image inpainting has a somewhat deeper history, starting

with attempts in the late 1990s and continuing today. Early
image inpainting attempts can be divided into categories,
including texture synthesis, PDE, and semiautomatic ap-
proaches. The GAN approach is fundamentally different
than these methods, but they paved the way for GANs and
had surprisingly decent results for the time.

2.1. Texture synthesis

Texture synthesis approaches, such as the one proposed
by Efros and Leung [2], involve marching pixel by pixel

across occluded image regions, searching for nearby blocks
for suitable similarities. Some texture synthesis approaches
involved marching block by block instead, improving effi-
ciency but sacrificing some quality.

2.2. PDE

PDE methods involve utilising isophote lines (curves on
a surface connecting points of equal brightness) to preserve
structural features. This results in decent-quality results for
images with narrow occlusions, but has issues with larger
occlusions as it does not generate textures well.

2.3. Semiautomatic

Semiautomatic approaches rely partially on user input to
sketch contours of occluded image regions, and then apply
texture synthesis approaches using these contours to gen-
erate more accurate results. This approach results in much
better quality as compared to texture synthesis methods, but
has drastically reduced efficiency since a human must be
involved in the inpainting process.

3. Method
Context Encoder [3] uses a completely different ap-

proach as compared to previous image inpainting tech-
niques. The paper combines an generator, which generates
an unoccluded image given an occluded image, with a dis-
criminator, which looks only at the occluded region and de-
termines if it’s fake or real. The generator and discrimina-
tor work against each other to continuously improve each
other through feedback. This adversarial process (GAN)
produces a generator which can generate believable images.
See Figure 1 for architecture specifics.

The generator takes the form of an autoencoder with a
series of convolutional layers. Context Encoder improves
on the autoencoder format by adding a fully connected lin-
ear layer in the center, increasing the level of context that
can be encoded into the surroundings (hence the name Con-
text Encoder). It is fed in a 128x128 image with a 64x64
occluded region (black pixels) in the center, and outputs a
64x64 image which represents the generated occluded re-
gion.

1



Unlike the in the original Context Encoder paper [3], we
decided to use two discriminators, rather than just one. The
local discriminator looks only at the output of the generator.
It’s job was to determine whether or not the inpainted image
looked realistic. The global discriminator gets to look at the
entire image after being inpainted with the result of the gen-
erator. It’s job is to determine if the inpainting matches well
with the rest of the image. Out hypothesis was that hav-
ing multiple discriminators would allow us to train more
precisely. These discriminators are series of convolutional
layers that reduces to a 0 to 1 floating point output which
describes whether it ”believes” the image is an actual pho-
tograph (1) or the result of the generator (0).

See Figure 3 for a diagram of these models.

4. Experiments
We decided to use a smaller, more manageable dataset

as compared to the one used in the Context Encoder pa-
per. The dataset we selected, STL-10 [1], has a much more
reasonable 96x96 image size, with a large number of un-
labeled samples. We chose this because Google Colab has
usage limits which make it difficult to use anything with a
larger size. In order to make this dataset work with the pro-
posed architecture, we scaled the images to 128x128. Some
results achieved in the paper can be seen below in Figure 2.

The hyperparameters that we chose were mostly based
off of what we had used for problem set 6, since that as-
signment was also about GANs. We used Adam optimizers
with learning rates of 0.0002 as well as beta values 0.5 and
0.999.

Although our original plan was to train our model as
a GAN, we actually found that that the generator became
more accurate when it was trained using L2 loss against
the ground-truth training data rather than the discriminators
(adversarial loss). We did also attempt a hybrid between L2
loss and adversarial loss, but this produced an overall worse
result. We had hoped that tweaking the hyperparameters
would be able to solve this problem, but nothing ended up
working. We suspect this is because there is a tensor trans-
formation error somewhere in our code causing the artifact-
ing seen in Figure 5.

We also attempted adding a global discriminator which
analyses the entire image to ensure the generated inpaint is
more believable when inserted back into the occluded im-
age. We factored into the loss, weighting it equally with the
local discriminator. The results however did not improve.

5. Conclusions
Context Encoder was a breakthrough for image inpaint-

ing – papers proceeding it use the same overall structure
with small to large modifications. Although we weren’t able
to outperform the paper’s results without major changes,

playing around with Context Encoder’s parameters was re-
ally insightful into how this GAN implementation works.
In the future, we’d have liked to see our implementation
with the discriminators properly integrated to better train
the generator and get much more realistic results.

6. Figures

Figure 1. Context Encoder architecture

Figure 2. Context Encoder baseline results

2



Figure 3. Our architecture

Figure 4. Our results (L2 loss only)

Figure 5. Our results (L2 + Adv loss)

3



References
[1] Adam Coates, Andrew Ng, and Honglak Lee. An analysis

of single-layer networks in unsupervised feature learning. In
Geoffrey Gordon, David Dunson, and Miroslav Dudı́k, edi-
tors, Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, volume 15 of Pro-
ceedings of Machine Learning Research, pages 215–223, Fort
Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.

[2] Alexei A. Efros and Thomas K. Leung. Texture synthesis by
non-parametric sampling. IEEE International Conference on
Computer Vision, 1999.

[3] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A. Efros. Context encoders: Feature learn-
ing by inpainting, 2016.

4


